banner
cells

cells

为美好的世界献上 code

15. Three Sum

15. 3Sum#

Given an integer array nums, return all the unique triplets [nums[i], nums[j], nums[k]] such that i != j, i != k, and j != k, and nums[i] + nums[j] + nums[k] == 0.

Notice: The solution set must not contain duplicate triplets.

Example 1:

Input: nums = [-1,0,1,2,-1,-4]
Output: [[-1,-1,2],[-1,0,1]]
Explanation: 
nums[0] + nums[1] + nums[2] = (-1) + 0 + 1 = 0.
nums[1] + nums[2] + nums[4] = 0 + 1 + (-1) = 0.
nums[0] + nums[3] + nums[4] = (-1) + 2 + (-1) = 0.
The unique triplets are [-1,0,1] and [-1,-1,2].

Example 2:

Input: nums = [0,1,1]
Output: []
Explanation: There are no unique triplets that sum up to 0.

Example 3:

Input: nums = [0,0,0]
Output: [[0,0,0]]
Explanation: The unique triplet is [0,0,0].

Constraints:

  • 3<=nums.length<=30003 <= nums.length <= 3000
  • 105<=nums[i]<=105-10^5 <= nums[i] <= 10^5

Two Pointers#

class Solution {
public:
    vector<vector<int>> threeSum(vector<int>& nums) {
        sort(nums.begin(), nums.end());
        int n = nums.size();
        vector<vector<int>> res;
        for (int i = 0; i < n - 2; ++i) {
            // Remove duplicates
            if (i != 0 && nums[i] == nums[i - 1]) {
                continue;
            }
            int left = i + 1, right = n - 1, target = -nums[i];
            while (left < right) {
                // Remove duplicates
                if (left != i + 1 && nums[left] == nums[left - 1]) {
                    ++left;
                    continue;
                }
                int sum = nums[left] + nums[right];
                if (sum < target) {
                    ++left;
                } else if (sum > target) {
                    --right;
                } else {
                    res.push_back({nums[i], nums[left], nums[right]});
                    ++left;
                    --right;
                }
            }
        }
        return res;
    }
};
Loading...
Ownership of this post data is guaranteed by blockchain and smart contracts to the creator alone.