209. Minimum Size Subarray Sum#
Given an array of positive integers nums
and a positive integer target
.
Find the minimal length of a contiguous subarray of which the sum ≥ target
and return 0 if there is no such subarray.
Example 1:
Input: target = 7, nums = [2,3,1,2,4,3]
Output: 2
Explanation: The subarray [4,3] has the minimal length under the condition.
Example 2:
Input: target = 4, nums = [1,4,4]
Output: 1
Example 3:
Input: target = 11, nums = [1,1,1,1,1,1,1,1]
Output: 0
Constraints:
Follow up:
- If you have figured out the O(n) solution, try coding another solution of which the time complexity is O(n log(n)).
Two Pointers#
class Solution {
public:
int minSubArrayLen(int target, vector<int>& nums) {
int n = nums.size();
int i = 0, j = 0;
int cur = 0;
int res = INT_MAX;
while (j < n) {
cur += nums[j];
while (cur >= target) {
res = min(res, j - i + 1);
cur -= nums[i];
++i;
}
++j;
}
return res == INT_MAX ? 0 : res;
}
};
Prefix Sum#
The sum of intervals should remind us of prefix sum.
class Solution {
public:
int minSubArrayLen(int target, vector<int>& nums) {
int n = nums.size();
vector<int> prev(n + 1, 0);
// prev[i] represents the sum of nums in the range [0, i)
for (int i = 1; i <= n; ++i) {
prev[i] = prev[i - 1] + nums[i - 1];
}
int res = INT_MAX;
for (int i = 0; i < n; ++i) {
// prev[j] - prev[i] represents the sum of nums in the range [i, j)
// We need to satisfy prev[j] - prev[i] >= target
// So prev[j] >= target + prev[i]
int find_val = target + prev[i];
// prev is non-decreasing, we can use binary search to find the right index of the range
auto iter = lower_bound(prev.begin(), prev.end(), find_val);
if (iter != prev.end()) {
res = min(res, static_cast<int>(iter - prev.begin()) - i);
// iter is 1 index ahead of the actual index we need (j is an open range), so no need to add 1
}
}
return res == INT_MAX ? 0 : res;
}
};